0

    1.本发明涉及风力发电技术领域的具体地,涉及。

    2年前 | admin | 263次围观

    一种随机风载荷下风力机动力响应分析方法

    1.本发明涉及风力发电技术领域,具体地,涉及一种随机风载荷下风力机动力响应分析方法。

    背景技术:

    2.风力机的工作环境是在野外的自然风场中,风场的湍流特性会改变风力机表面的气动载荷,从而影响风力机的结构动力学特性,在台风等极端恶劣气候的条件下,风力机还会发生断裂等危险情况。叶片作为风力机捕获风能的重要部件,国内外对叶片结构做了大量尝试与研究,例如在叶片后缘添加小翼等。叶片改型后风力机捕获风能的能力发生改变,即风轮受到的气动载荷改变,使叶片顶端位移与叶片最大应力发生变化,塔架作为风轮的支撑结构,风轮工作时叶片的振动会影响到塔架,因此叶片改型同样会影响塔架的动力学特性。

    3.在目前公开的现有技术中,国内主要对单独的风机部件或是对未做叶片改型的传统风力机动力学响应开展研究,缺少从叶片改型的角度对整机风载荷建模与求解整机动力学响应的研究。

    技术实现要素:

    4.本发明的目的是针对叶片改型风力机由于动力学设计而引发故障的问题,提供一种随机风载荷下考虑塔架耦合的风力机动力响应分析方法。

    5.为解决上述问题,本发明的技术方案为:

    6.一种随机风载荷下风力机动力响应分析方法,包括以下步骤:

    7.在matlab仿真平台下建立随机风速场模型;

    8.整机动力学建模;

    9.通过有限元仿真建立有限元模型,进行动态响应的求解计算;

    10.考虑风轮与塔架的耦合关系,进行耦合计算求解。

    11.可选地,所述在matlab仿真平台下建立随机风速场模型的步骤具体包括:

    12.步骤1:建立平均风速场;

    13.步骤2:建立脉动风速功率谱;

    14.步骤3:通过谐波叠加法建立风力机脉动风场。

    15.可选地,所述建立平均风速场具体包括:风场中某一点的风速由平均风速与湍流风速组成,对于三维风场,任意一点的风速为:式中:

    16.为平均风速,u(x,y,z,t),v(x,y,z,t),z(x,y,z,t)为湍流风速在三个方向的投影。

    17.可选地,所述建立脉动风速功率谱具体包括:选用kaimal谱进行模拟,顺风向kaimal谱密度函数为:式中:k=0.4。

    18.可选地,所述通过谐波叠加法建立风力机脉动风场具体包括:把湍流速度的频率宽度分为n等份,每等份的长度为:

    19.δf=(f

    2-f1)/n

    [0020][0021]

    式中,

    [0022][0023][0024]fm

    =f1+(m-0.5)*δf,m=1,2

    …n[0025]

    对sm(fm)进行cholesky分解,得到下三角矩阵hm:

    [0026]

    sm(fm)=hm·hmt

    [0027][0028]

    产生n个随机角度θn,θn在[0~2π]上均匀分布。

    [0029]

    可选地,所述通过谐波叠加法建立风力机脉动风场具体还包括:利用随机角度θn构建对角矩阵xm:

    [0030][0031]

    fm下每个点的离散傅里叶变换值为:

    [0032]vm

    =hm·

    xm·i[0033]

    式中:i为n

    ×

    1的单位矩阵,构造一个n

    ×

    n的矩阵:

    [0034]

    v=|v1·v2

    …vm

    …vm

    |

    [0035]

    矩阵v中第j行则代表j点的离散傅里叶变换值。

    [0036]

    可选地,所述整机动力学建模的步骤具体包括:

    [0037]

    基于模态叠加法对动力学响应进行计算,振动的基本运动方程为:

    [0038][0039]

    式中:m、c、k分别为系统的质量、阻尼、刚度矩阵,y(t)分别为加速度、

    速度、位移向量,p(t)为载荷向量;

    [0040]

    通过对模态分析得到的振型乘上因子后求和来计算结构的响应,在求解每个单自由度方程的位移分量后相加得到最后的解:

    [0041][0042]

    可选地,所述通过有限元仿真建立有限元模型,进行动态响应的求解计算的步骤具体包括:

    [0043]

    考虑耦合作用对风力机的影响,建立三种不同有限元模型;

    [0044]

    进行气动载荷求解,输出风力机在随机风速下的气动载荷;

    [0045]

    动态响应仿真,基于模态叠加法获取风轮与塔架的最大位移与最大应力曲线。

    [0046]

    与现有技术相比,本发明基于谐波叠加法,利用matlab仿真软件编写用于双叉式叶尖等叶片改进形式风力机的仿真程序,计算出该风力机动态响应仿真所需随机风速时程曲线,使仿真计算所得风场数据更符合风力机情况,将所设计的改型叶片风力机建立三维模型与有限元模型,针对不同部件之间连接关系设置了不同的约束条件,使风轮与塔架之间在计算时有耦合关系存在,计算动态响应得到叶片改型对风轮与塔架的影响规律,使风力机动力学研究更加完善,对叶尖结构改型叶片风力机动力学研究具有重要意义。

    附图说明

    [0047]

    通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

    [0048]

    图1为本发明实施例提供的随机风载荷下风力机动力响应分析方法流程框图;

    [0049]

    图2为本发明实施例提供的双叉式叶尖结构风轮图;

    [0050]

    图3为本发明实施例提供的目标谱与计算谱对比图;

    [0051]

    图4为本发明实施例提供的风速时程曲线图;

    [0052]

    图5a、5b为本发明实施例提供的风力机风力及塔架最大位移响应图。

    具体实施方式

    [0053]

    下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。

    [0054]

    具体地,图1为本发明实施例提供的一种随机风载荷下风力机动力响应分析方法,如图1所示,所述方法包括以下步骤:

    [0055]

    s1:在matlab仿真平台下建立随机风速场模型;

    [0056]

    具体地,所述在matlab仿真平台下建立随机风速场模型包括以下步骤:

    [0057]

    步骤1:建立平均风速场;

    [0058]

    风场中某一点的风速由平均风速与湍流风速组成,对于三维风场,任意一点的风

    速为:

    [0059]

    式中:为平均风速,u(x,y,z,t),v(x,y,z,t),z(x,y,z,t)为湍流风速在三个方向的投影。

    [0060]

    步骤2:建立脉动风速功率谱

    [0061]

    对于顺风向脉动风速功率谱,常用的有kaimal谱、von karman谱和davenport谱。本实施例中选用kaimal谱进行模拟,顺风向kaimal谱密度函数为:

    [0062][0063]

    式中:k=0.4。

    [0064]

    对于风场中的任意两点之间存在空间相关性,利用davenport指数来定义相关函数:

    [0065][0066]

    式中:k为无量纲的衰减常数,r为两点之间的距离。

    [0067]

    步骤3:通过谐波叠加法建立风力机脉动风场。

    [0068]

    把湍流速度的频率宽度分为n等份,每等份的长度为:

    [0069]

    δf=(f

    2-f1)/n

    ꢀꢀꢀ

    (4)

    [0070][0071]

    式中matlab 风速模型

    [0072][0073][0074]fm

    =f1+(m-0.5)*δf,m=1,2

    …nꢀꢀꢀ

    (8)

    [0075]

    对sm(fm)进行cholesky分解,得到下三角矩阵hm:

    [0076]

    sm(fm)=hm·hmt

    ꢀꢀꢀ

    (9)

    [0077][0078]

    产生n个随机角度θn,θn在[0~2π]上均匀分布。利用随机角度θn构建对角矩阵xm:

    [0079][0080]

    fm下每个点的离散傅里叶变换值为:

    [0081]vm

    =hm·

    xm·iꢀꢀꢀ

    (12)

    [0082]

    式中:i为n

    ×

    1的单位矩阵。

    [0083]

    构造一个n

    ×

    n的矩阵:

    [0084]

    v=|v1·v2

    …vm

    …vm

    |

    ꢀꢀꢀ

    (13)

    [0085]

    矩阵v中第j行则代表j点的离散傅里叶变换值。利用以上公式在matlab软件中编程就可以得到风力机脉动风速时程图。

    [0086]

    s2:整机动力学建模;

    [0087]

    具体地,所述整机动力学建模包括:

    [0088]

    2.1运动方程

    [0089]

    基于模态叠加法对动力学响应进行计算,振动的基本运动方程为:

    [0090][0091]

    式中:m、c、k分别为系统的质量、阻尼、刚度矩阵,y(t)分别为加速度、速度、位移向量,p(t)为载荷向量。

    [0092]

    2.2模态叠加法

    [0093]

    模态叠加法是通过对模态分析得到的振型乘上因子后求和来计算结构的响应。假设y可以使用模态的振型通过线性叠加来表示,则将物理坐标y转化为模态坐标q:

    [0094]

    y(t)=φq(t)

    ꢀꢀꢀ

    (15)

    [0095]

    将式(15)带入式(14)中可以得到

    [0096][0097]

    将式(16)两边同乘φ

    t

    [0098][0099]

    假设比例阻尼存在且满足正交性,则

    [0100][0101]

    式中:ξi为第i阶阻尼比,ωi为第i阶的振动频率。

    [0102]

    式(18)可化为m个非耦合的单自由度方程:

    [0103][0104]

    在求解每个单自由度方程的位移分量后相加得到最后的解:

    [0105][0106]

    s3:通过有限元仿真建立有限元模型,进行动态响应的求解计算;

    [0107]

    具体地,通过有限元仿真建立有限元模型包括:

    [0108]

    3.1模型建立

    [0109]

    在本实施例中,选取双叉式叶尖作为改进型风力机叶片为例做动态响应分析。考虑耦合作用对风力机的影响,建立三种不同有限元模型。

    [0110]

    风轮:首先将未改型叶片叶尖结构叶片间隔120

    °

    圆周阵列,以及将双叉式叶尖结构叶片间隔120

    °

    圆周阵列,之后将阵列完成的叶片与轮毂连接得到两种叶尖结构叶片的风轮模型,其中双叉式叶尖结构风轮如图2所示。

    [0111]

    简化塔架:将风轮、轴、机舱简化为集中质量施加在塔架顶部,通过ansys中mass21单元与塔架耦合。

    [0112]

    整机:将风轮、轴、机舱、塔架装配为整体。其中风轮与轴之间采用绑定接触,轴与机舱之间使用回转连接。机舱与塔架之间使用固定连接。塔架底部与地面做固定约束。本实施例中采用solidworks建立三维模型,后导入hypermesh中进行有限元模型的建立。风轮使用solid187单元,塔架使用solid186单元。

    [0113]

    3.2气动载荷求解

    [0114]

    利用步骤s1中得到的脉动风速时程,编写udf程序导入fluent,设置流体计算求解所需的边界条件与初始条件,在求解结束后,输出风力机在随机风速下的气动载荷。

    [0115]

    3.3动态响应仿真

    [0116]

    将步骤3.2中求解得到的风力机表面所受压力导入ansys中作为风力机气动载荷进行动态响应的求解计算。在计算中考虑风轮与塔架的耦合关系matlab 风速模型,计算时创建与压力载荷数据量相同的计算子步使fluent与workbench耦合计算。基于模态叠加法获取风轮与塔架的最大位移与最大应力曲线,风速时程目标谱与计算谱对比如图3所示,风速时程曲线图如图4所示。

    [0117]

    s4:考虑风轮与塔架的耦合关系,进行耦合计算求解。

    [0118]

    计算结果如图5a和5b所示,从图5a和5b中可以看出,叶片改型前后风轮与塔架的动态响应曲线发生改变,而风轮与塔架耦合作用对两种叶片的影响也有较好的体现。

    [0119]

    与现有技术相比,本发明基于谐波叠加法,利用matlab仿真软件编写用于双叉式叶尖等叶片改进形式风力机的仿真程序,计算出该风力机动态响应仿真所需随机风速时程曲线,使仿真计算所得风场数据更符合风力机情况,将所设计的改型叶片风力机建立三维模型与有限元模型,针对不同部件之间连接关系设置了不同的约束条件,使风轮与塔架之间在计算时有耦合关系存在,计算动态响应得到叶片改型对风轮与塔架的影响规律,使风力机动力学研究更加完善,对叶尖结构改型叶片风力机动力学研究具有重要意义。

    [0120]

    以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本技术的实施例和实施例中的特征可以任意相互组合。

    技术特征:

    1.一种随机风载荷下风力机动力响应分析方法,其特征在于,所述方法包括以下步骤:在matlab仿真平台下建立随机风速场模型;整机动力学建模;通过有限元仿真建立有限元模型,进行动态响应的求解计算;考虑风轮与塔架的耦合关系,进行耦合计算求解。2.根据权利要求1所述的随机风载荷下风力机动力响应分析方法,其特征在于,所述在matlab仿真平台下建立随机风速场模型的步骤具体包括:步骤1:建立平均风速场;步骤2:建立脉动风速功率谱;步骤3:通过谐波叠加法建立风力机脉动风场。3.根据权利要求2所述的随机风载荷下风力机动力响应分析方法,其特征在于,所述建立平均风速场具体包括:风场中某一点的风速由平均风速与湍流风速组成,对于三维风场,任意一点的风速为:式中:为平均风速,u(x,y,z,t),v(x,y,z,t),z(x,y,z,t)为湍流风速在三个方向的投影。4.根据权利要求2所述的随机风载荷下风力机动力响应分析方法,其特征在于,所述建立脉动风速功率谱具体包括:选用kaimal谱进行模拟,顺风向kaimal谱密度函数为:式中:k=0.4。5.根据权利要求2所述的随机风载荷下风力机动力响应分析方法,其特征在于,所述通过谐波叠加法建立风力机脉动风场具体包括:把湍流速度的频率宽度分为n等份,每等份的长度为:δf=(f

    2-f1)/n式中,式中,f

    m

    =f1+(m-0.5)*δf,m=1,2...n对sm(fm)进行cholesky分解,得到下三角矩阵hm:s

    m

    (f

    m

    )=h

    m

    ·

    h

    mt

    产生n个随机角度θn,θn在[0~2π]上均匀分布。6.根据权利要求5所述的随机风载荷下风力机动力响应分析方法,其特征在于,所述通过谐波叠加法建立风力机脉动风场具体还包括:利用随机角度θn构建对角矩阵xm:fm下每个点的离散傅里叶变换值为:v

    m

    =h

    m

    ·

    x

    m

    ·

    i式中:i为n

    ×

    1的单位矩阵,构造一个n

    ×

    n的矩阵:v=|v1·v2

    …vm

    …vm

    |矩阵v中第j行则代表j点的离散傅里叶变换值。7.根据权利要求1所述的随机风载荷下风力机动力响应分析方法,其特征在于,所述整机动力学建模的步骤具体包括:基于模态叠加法对动力学响应进行计算,振动的基本运动方程为:式中:m、c、k分别为系统的质量、阻尼、刚度矩阵,y(t)分别为加速度、速度、位移向量,p(t)为载荷向量;通过对模态分析得到的振型乘上因子后求和来计算结构的响应,在求解每个单自由度方程的位移分量后相加得到最后的解:8.根据权利要求1所述的随机风载荷下风力机动力响应分析方法,其特征在于,所述通过有限元仿真建立有限元模型,进行动态响应的求解计算的步骤具体包括:考虑耦合作用对风力机的影响,建立三种不同有限元模型;进行气动载荷求解,输出风力机在随机风速下的气动载荷;动态响应仿真,基于模态叠加法获取风轮与塔架的最大位移与最大应力曲线。

    技术总结

    本发明提供一种随机风载荷下风力机动力响应分析方法,所述方法包括:在MATLAB仿真平台下建立随机风速场模型;整机动力学建模;通过有限元仿真建立有限元模型,进行动态响应的求解计算;考虑风轮与塔架的耦合关系,进行耦合计算求解。本发明随机风载荷下风力机动力响应分析方法通过计算动态响应得到叶片改型对风轮与塔架的影响规律,使风力机动力学研究更加完善。加完善。加完善。

    技术研发人员:代元军 蔡昊燃 王聪 李保华 石坤举

    受保护的技术使用者:上海电机学院

    技术研发日:2022.09.27

    技术公布日:2022/12/30

    发表评论